Search results

Search for "composite hybrid fibers" in Full Text gives 2 result(s) in Beilstein Journal of Nanotechnology.

Advanced hybrid nanomaterials

  • Andreas Taubert,
  • Fabrice Leroux,
  • Pierre Rabu and
  • Verónica de Zea Bermudez

Beilstein J. Nanotechnol. 2019, 10, 2563–2567, doi:10.3762/bjnano.10.247

Graphical Abstract
  • ) was employed in “Topochemical engineering of composite hybrid fibers using layered double hydroxides and abietic acid” [27]. In this work, a composite hybrid was formed using cellulose fibers with LDH particles growing on their surface and then covered by abietic acid. The fibers were tested against
PDF
Editorial
Published 20 Dec 2019

Topochemical engineering of composite hybrid fibers using layered double hydroxides and abietic acid

  • Liji Sobhana,
  • Lokesh Kesavan,
  • Jan Gustafsson and
  • Pedro Fardim

Beilstein J. Nanotechnol. 2019, 10, 589–605, doi:10.3762/bjnano.10.60

Graphical Abstract
  • groups of AA to obtain charge-directed assembly of one material on the other material. Thus, composite hybrid fibers (C-HF) were produced and then characterized by optical (CAM), spectroscopic (XRD, IR) and microscopic techniques (SEM) to determine their average length and distribution, structure and
  • between material entities play a crucial role in the resulting properties. Keywords: abietic acid; composite hybrid fibers; high tensile pulp; hydrophobic pulp; layered double hydroxides; Introduction Renewable chemicals or materials and their value addition are the current focus in the area of
  • increase the surface roughness of the fibers and yield good adhesion properties. Bleached and unbleached fibers, refined and unrefined, were used as starting materials to synthesize direct composites (AA + fiber), hybrid fibers (LDH + fiber) and composite hybrid fibers (AA + LDH + fiber). We expect that
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2019
Other Beilstein-Institut Open Science Activities